Civil Engineering Infrastructures Journal

Abstract

Pile foundations are relatively vulnerable to lateral loads. During liquefaction-induced lateral spreading, this vulnerability is particularly conspicuous due to a loss of strength and stiffness in the liquefied soil. A nonlinear effective stress analysis incorporating an elastoplastic constitutive model based on Finite Difference Method (FLAC2D program) was used to numerically simulate shake table experiment on piles in laterally spreading soils. The soil-pile interaction has been properly considered by using interface elements. The main objective of this paper is to assess the accuracy of a 2D numerical simulation of physical models in predicting the dynamic response of pile foundations and to identify the capability of 2D numerical simulation for 3D effects such as shadow and neighboring effects in pile groups without a pile cap. Results are presented and discussed, in which the obtained response from the simulation is compared to that measured in the test. For the single pile, a fairly good agreement was observed between computed and measured results. It was also found that the shadow and neighboring effects reduced lateral load on the piles by few percent of difference compared with experimental results. [Download Link]

I BUILT MY SITE FOR FREE USING